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Abstract. We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic
Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model,
called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics
of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence ap-
proximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting
assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the
mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the
suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation
frequency corresponding to the global variables of the exact system.

INTRODUCTION
One of the extraordinary properties of excitable systems lies in their ability to synchronize. Appreciating the wealth
of complex synchronization phenomena and spatiotemporal pattern activity, the macroscopic systems of coupled
excitable units have now been recognized as a distinct class of dynamical systems [1]. The dynamics of such systems
typically involves multiple characteristic spatial and temporal scales, which results in different forms of perturbation
and fluctuations of intrinsic parameters. Such influences are described by introducing noise into pertaining models.
Further, modeling of macroscopic systems of excitable units requires one to explicitly take into account the effects of
interaction delays, which derive from finite signal velocities and/or latency in units’ responses.

In mathematical terms, these models are given by systems of nonlinear stochastic delay-differential equations
(SDDEs), whose stability and bifurcations are difficult to analyze. In particular, the approach to stability analysis
based on Fokker-Planck formalism is hampered by the non-Markovian character of the underlying process, whereas
the phase reduction techniques are not applicable, as the phase variable cannot be attributed to systems lying in
equilibrium. Nonetheless, one should further be able to account for the stochastic bifurcations that the global variables
may undergo, which is accompanied by a qualitative change of the relevant asymptotic probability distributions or the
associated power spectra [2]. For these reasons, it has become necessary to develop approximate models, that (i) can
allow one to analyze the stability and stochastic bifurcations of the described systems, and (ii), are self-contained, in
a sense that the parameter domains where the model applies or fails are mathematically tractable.

In this paper, we consider assemblies of noisy Fitzhugh-Nagumo (FHN) units, whose dynamics is canonical for type
II excitability class. The goal is to make an overview of results demonstrating that the two requirements stated above
are satisfied by the mean-field (MF) model which combines the cumulant approach with the Gaussian approximation.
The paper is organized as follows. In Sec. 1, we present the MF model for an assembly of FHN units and discuss the
conditions under which its two core approximations are fulfilled. In Sec. 2 we examine the setup consisting of two
delay-coupled networks of FHN units and analyze its stability and bifurcations.
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MF APPROXIMATIONS AND THEIR VALIDITY
Let us consider a network of delay-coupled FHN units with noise terms added to the slow variables ("internal noise").
For simplicity, we assume that the network is homogeneous and that the units are coupled in the all-to-all fashion. The
couplings are characterized by the strength c and the delay τ . The local dynamics is then given by:

εdxi = (xi − x3
i /3− yi)dt +

c
N

N

∑
j=1

(x j(t − τ)− xi)dt

dyi = (xi +b)dt +
√

2DdWi, i = 1, . . .N,

(1)

where ε = 0.01 is the separation ratio between the fast and the slow characteristic time scale, b = 1.05 denotes the
bifurcation parameter, while dWi are stochastic increments of independent Wiener processes. The Hopf bifurcation
occurs at b = 1, and the units are in excitable regime for b > 1.

Starting from the original system of 2N SDDEs, the MF model reduces the description of collective dynamics to a

set of just 5 deterministic delay-differential equations for the means mx(t) = ⟨xi(t)⟩ ≡ lim
N→∞

(1/N)
N
∑

i=1
xi(t),my(t) =

⟨yi(t)⟩, the variances sx(t) = ⟨(⟨xi(t)⟩ − xi(t))2⟩,sy(t) = ⟨(⟨yi(t)⟩ − yi(t))2⟩ and the covariance u(t) = ⟨(⟨xi(t)⟩ −
xi(t))(⟨yi(t)⟩ − yi(t))⟩, whereby D plays the role of an additional bifurcation parameter. The fact that the system
comprises only the equations for the first and the second order moments is consistent with the Gaussian approximation,
which is required as a closure hypothesis due to nonlinearity of the original system (1). In order to ensure that the
model is analytically tractable, one may further introduce "adiabatic approximation", by which the variances and the
covariances are replaced by their stationary values [3, 4]. This is physically justified as the corresponding relaxation
times are typically small. The MF model then contains just two equations for the means [3, 4]:

ε
dmx(t)

dt
= mx(t)−mx(t)3/3− mx(t)

2

{
1− c−mx(t)2 +

√
[c−1+mx(t)2]2 +4D

}
−my(t)+ c[mx(t − τ)−mx(t)],

dmy(t)
dt

= mx(t)+b.

(2)

The form (2) is convenient because for τ = 0 one may apply the phase plane analysis, showing that for conditions
where the MF model holds, the whole assembly acts as a macroscopic excitable system, cf. Fig. 1(a). It is further
possible to directly compare the features of excitable dynamics (such as threshold-like behavior) for a single FHN
unit and the assembly. Another important point is that the bifurcation analysis of the MF model can be carried out
analytically [3]. In particular, system (2) is found to undergo a sequence of direct and inverse Hopf bifurcations,
see the τ(D) bifurcation diagram in Fig. 1(b), whereby the former (latter) are always supercritical (subcritical). The
system’s behavior is also strongly affected by the global fold-cycle bifurcation. Due to interplay between the local
bifurcations and the global bifurcation, there are parameter domains where the MF model is bistable, exhibiting
coexistence between the stationary and the oscillatory state or between two oscillatory solutions.

An issue relevant for the application of MF model is to identify the parameter domains where it provides qualita-
tively accurate predictions. This depends on the range of validity of MF approximations (MFAs). In our recent paper
[3], we have singled out the Quasi-independence Approximation (QIA) and the Gaussian Approximation (GA) as the
key ingredients for the model (2), providing their precise formulations. Here we briefly address two conceptual points
regarding the MFAs: (i) whether they are "universal", or they should be adapted to the considered class of systems,
and (ii) whether the dynamics of the MF model can itself point to parameter domains where the MFAs fail.

The MFAs are often regarded as if they were independent on the class of systems which the particular model belongs
to. Within such simplified view, one would expect the MF model to break down above the stochastic bifurcation
underlying transition from the stochastically stable fixed point to continuous oscillations, which is accompanied
by the loss of Gaussian property for the asymptotical distribution of the global variables X = (1/N)∑N

i=1 xi(t),Y =
(1/N)∑N

i=1 yi(t). However, the MF model holds in the supercritical state and its oscillation frequency above the Hopf
bifurcation matches quite closely the average frequency of the noise-induced oscillations for the (X ,Y ) variables. This
indicates that formulation of GA should be adapted to class II excitable systems. We have shown that it is crucial
to take into account the relaxation character of pertaining oscillations [3]. Such refined formulation of GA does not
require the xi(t) and yi(t) to be Gaussian processes over asymptotically large time intervals, but rather to be Gaussian
over small intervals (t, t +δ t), whereby the latter should hold for most t. Use of GA in the supercritical state relies on
that the fraction of time where this condition is not satisfied does not lead to significant deviations of the MF dynamics
relative to the exact system.
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FIGURE 1. (a) Phase plane analysis of the MF model (2) for b = 1.05,c = 0.1,ε = 0.07,τ = 0. The boundary between the initial
conditions leading to small (SAR) or large amplitude responses (LAR) is given by a canard-like (CNR) trajectory ("ghost separatrix").
(b) Bifurcation diagram for the MF model (2). The direct (inverse) Hopf bifurcations are shown by the black (gray) solid lines,
whereas the dashed line indicates the parameter values that give rise to fold-cycle bifurcation. The regions admitting bistability
between the fixed point (FP) and the limit cycle (LC), or between two LCs are denoted by triangles (squares). (c) Illustration of the
scenario where QIA fails. The stochastic orbit of the exact system (blue line) fluctuates between the coexisting solutions of the MF
model, the FP and the LC. The parameter set is (c,D,τ) = (0.1,0.0029,0.3).

Detailed analysis shows that GA is satisfied if there is qualitative matching between the attractors for local variables
(xi,yi) and the respective averages over an ensemble of stochastic realizations. As for validity of QIA, the key point
lies in that the dynamics of the MF model may indicate in a self-consistent fashion the parameter domains where QIA
no longer holds. In particular, we have shown that the noise-induced bistability in the MF dynamics is a necessary
condition for the failure of QIA [3]. The key step to this inference is to realize that QIA implies the validity of Gaussian
approximation for the global variables (X ,Y ) over an ensemble of stochastic realizations. What we have demonstrated
is that the stochastic fluctuations of (X ,Y ) are no longer Gaussian when the MF model displays coexistence between
the fixed point and the limit cycle or between two limit cycles. For the parameter domains admitting these scenarios,
the typical orbits of the exact system exhibit large fluctuations that qualitatively appear as stochastic switches between
the two solutions of the MF model, see Fig. 1(c). Note that the violation of QIA may point to complex self-organization
phenomena, such as the cluster-states [5, 6].

MF MODEL FOR TWO DELAY-COUPLED ASSEMBLIES
Our main point concerns the potential extending of the MF approach to hierarchical and modular networks. To this
end, we consider a paradigmatic setup involving two interacting networks of globally coupled FHN units. Such a
block may serve as a nucleus for the "network of networks" [7, 8], which can either be realized as a hierarchy of
multiple networks, or it can be seen as an idealization of a network with strong modular structure and a large number
of elements in each community. Both types of configurations are quite common in biological systems.

In our setup, the populations are assumed to be homogeneous, and the coupling between the assemblies is given by
a nonlinear threshold-like function of the respective global variables. The inter-population couplings are characterized
by the strength gc,i, where i refers to the population index, and the delay τc,i. The interactions within the populations
are linear, and are described by gin,i and τin,i, τin,i < τc,i. The equations for the local dynamics then read:

εdxi,k = (xi,k − x3
i,k/3− yi,k)dt +

gin,k

N

N

∑
j=1

[x j,k(t − τin,k)− xi,k(t)]dt +gc,k arctan[Xl(t − τc,k)+bl ]dt,

dyi,k = (xi,k +bk)dt +
√

2DkdWi,k,

(3)

where k, l denote population indices (k, l ∈ {1,2},k ̸= l). Applying the method described in Sec. 1, we arrive at the
MF model for two delay-coupled assemblies [4]:

ε
dmx,i(t)

dt
= mx,i(t)−

mx,i(t)3

3
−

mx,i(t)
2

(1−gin,i −mx,i(t)2 +
√
(gin,i −1+mx,i(t)2)2 +4Di)−my,i(t)

+gin,i(mx,i(t − τin,i)−mx,i(t))+gc,i arctan(mx, j(t − τc,i)+b j)

dmy,i(t)
dt

= mx,i(t)+bi, (i, j ∈ {1,2}, i ̸= j).

(4)
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FIGURE 2. (a) Hopf bifurcation curves τc(gc) for model (4). The internal parameter values are τin = 0.3 gin = 0.1 and
D = 0.0001. (b) provides a close-up view of (a), focused on the parameter region where the stability of the equilibrium changes.
(c), (d), (e) and (f) show the time series of the exact system (3) and the approximate system (4) below (gc = 0.16,τc = 0.06) and
above (gc = 0.16,τc = 0.14) the curve τ3,+ from (b). The left (right) column refers to the exact (approximate) system, whereas the
top (bottom) row corresponds to states below (above) τ3,+.

Since our main interest lies with the effects of gc,i and τc,i, let us suppose that the intra-coupling parameters of
both assemblies are identical and are set to gin and τin which admit the stationary state. As for a single population,
the bifurcation analysis shows that the approximate model (4) undergoes a sequence of direct and inverse supercriti-
cal and subcritical Hopf bifurcations, such that the direct (inverse) bifurcations lead to destabilization (stabilization)
of the stationary state [4]. The sequence per se depends on the details of system configuration, like the symmetri-
cal/asymmetrical character of the cross-population terms.

The main result refers to the symmetrical case gc,1 = gc,2 = gc,τc,1 = τc,2 = τc, see the τc(gc) bifurcation diagram in
Fig. 2(a). In particular, we demonstrate that the equilibrium may lose stability via two different scenarios depending on
gc [4]. This is associated to the fact that apart from the local Hopf bifurcations, the MF model also undergoes a global
fold-cycle bifurcation at (gc,τc) = (g

′
0,0), whereby a saddle cycle and a large stable limit cycle are born. For gc < g

′
0,

the equilibrium is destabilized via the direct supercritical Hopf bifurcation, cf. the corresponding time series in Fig.
2(c)-(f). Note that such a scenario can also be realized for instantaneous couplings solely by increasing gc. The other
scenario (gc > g

′
0) unfolds via the direct subcritical Hopf bifurcation, and is immediately tied to the global bifurcation.

In fact, sufficiently away from the Hopf bifurcation, the only remaining attractor is the large cycle born in the fold-
cycle bifurcation. An interesting ingredient to the second scenario is that for gc ≃ gin there exists a time-lag threshold
necessary to destabilize the equilibrium. Apart for facilitating the qualitative analysis on stability of the exact system,
as well as the scenarios for onset and suppression of the collective mode, the MF model (4) also provides accurate
predictions on the average frequency of oscillations of the exact system (3).

The future work will focus on the analysis of finite-size effects and building the MF model appropriate for networks
with complex topology of interactions.
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